Hot Dip Galvanizing GA ## 1.1 Corrosion protection using zinc The various processes for protecting steel from corrosion using zinc demonstrated in photomicrographs and surface views . . . #### Zinc Spraying Grit blasted surfaces are coated with droplets of semi-molten zinc sprayed from a special gun fed by either zinc wire or powder (BS 2569: Part 1). #### Hot Dip Galvanizing a) General Galvanizing A batch process in which the parts to be galvanized are dipped in molten zinc (galvanizing of fabricated articles in accordance with BS 729). #### Metallic Coating With Zinc Dust (mechanical plating/sherardizing) A process by which suitably prepared small components are tumbled in zinc dust at temperatures below the melting point of zinc under appropriate conditions to develop a coating (BS 4921 for sherardizing). #### b) Continuous Galvanizing The continuous galvanizing of steel strip (BS 2989), wire (BS 443) and tube (BS 1387) which are immersed in molten zinc in an automatic plant. #### Zinc Dust Painting Process in which steel surfaces are coated using paints containing sufficient powder to develop a film which can conduct elec- #### Zinc Plating (electrogalvanizing) A zinc salt solution is used to electrolytically deposit a layer of zinc on a cleaned steel surface. Acid or alkaline electrolytes (some containing cyanide) can be used (BS 1706 and BS 3382). ### Cathodic Protec- A method of corrosion protection in which a zinc anode is connected to the steel component in the presence of an electrolyte. # Hot Dip Galvanizing GA ## 1.1 Corrosion protection using zinc ### . . . and in tabular form | PROCESS | Normal
coating
thickness
[µm] | Alloying
with the
base | Composition of the | Processing
method | After treatment | | |---|--|------------------------------|--|---|---|--------------------------| | | | | coating | | Normal | Possible | | Hot Dip Galvanizing a) general galvanizing of iron and steel articles. BS 729. | 50-150 | yes | lron-zinc
alloy layers
on basis
steel usually | Dipping in molten zinc | Torun | | | b) continuous:
steel strip
galvanizing
BS 2989 | 15-25 | yes | with a zinc layer above them. | | Chromate treatment | Over-
coating
also | | continuous hot dip galvanizing of steel strip | 20-40 | yes | Predomin-
antly zinc
layers | Running
through
molten zinc | - | alloying* | | galvanizing wire BS 443 | 5-30 | yes | on basis
steel | | - | J | | Thermal spraying - BS 2569 Part 1 | 80 – 150 | no | Coating of drops of zinc on film of oxide | Spraying of molten zinc | Sealing of penetrating coating | Overcoating | | Zinc plating (electrogalvanizing) - individual baths BS 1706 - continuous process | 5-25
2.5-5 | no
no | Pure zinc coating | Zinc deposition
by electrical cur-
rent in aqueous
electrolyte | Chromate treatment | Overcoating | | Metallic coatings
with zinc dust
a) Sherardizing BS 4921 | 15 – 30 | yes | Iron-zinc
alloy coating | Diffusion steel-
zinc below
Zn fusion
temperature. | - | Overcoating | | b) Mechanical plating | 10-20 | no | Homogeneous
zinc
coating possibly
on intermediate
layers of copper | Hammering of
zinc powder by
glass balls | Partial chromate treatment | Overcoating | | Painting
BS 4652 | Thin coat
10 - 20
Norm coat
40 - 80
Thick coat
60 - 120 | no | Zinc dust
pigment
with binding
agent | Deposit by
brushing, rolling,
spraying,
dipping | Top coating compatible with primary coating | | | Protection | High purity zinc anodes (99.995 %) can be used to sacrificially protect iron and steel structures that are immersed or buried in an efficient electrolyte. If the zinc anode is to function efficiently it is vital that it is alway in good contact with the steel that it is protecting. The rate at which zinc anodes are consumed in sea water is about 12 kg/ampere – year. On bare steel the average current density is about 0.10 A/m². Therefore, to protect 100 m² of bare steel requires approximately 120 kg/year of zinc anodes. | | | | | | ^{*} Alloying of a zinc coating by specific heat treatment especially with galvanized steel strip.